
Introduction 

Organoids are 3-dimensional (3D) mini-organs formed by 
the self-organization of stem cells, progenitor cells, or tissue 
fragments, in the presence of biophysical and biochemical 
signals that simulate the corresponding organ’s in vivo milieu 
[1,2]. Their tissue-specific structural and functional charac-
teristics, along with their multicellular complexity, provide a 
potent platform for advancing organ developmental research, 
disease modeling, drug screening, and tissue engineering 
[3–5]. Most organoid culture systems have relied heavily on 
Matrigel, a basement membrane extract produced from Engel-
breth-Holm-Swarm mouse sarcoma [6]. Although Matrigel 
provides a highly functional matrix for cell proliferation and 
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Matrigel, a mouse sarcoma-derived extract, is considered the gold standard for organoid cul-
tures. However, it has several drawbacks, including inconsistent and ill-defined composition, 
varying quality between batches, and potential cancer-related health risks. These factors 
highlight the need to develop chemically defined alternatives to Matrigel. Natural biopoly-
mers derived from living organisms have emerged as promising substitutes capable of creat-
ing chemically defined extracellular matrix (ECM)-mimicking materials to support organoids 
in a 3-dimensional (3D) environment. This article provides an overview of natural biopoly-
meric hydrogel-based bioengineering approaches for constructing 3D matrices resembling 
artificial ECM for organoid cultures. It discusses the latest developments in utilizing natural 
biopolymers to direct the growth, differentiation, and maturation of organoids, along with 
their translational applications in the fields of bioengineering and biomedicine. Additionally, 
the article offers perspectives on multidisciplinary research on natural biopolymer-based hy-
drogels for more practical applications as next-generation matrices for organoid cultures. 
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differentiation due to its remarkable stem cell niche signaling 
properties and tissue-like mechanical properties [7], its het-
erogeneity, batch-to-batch variation, and ill-defined composi-
tion lead to uncontrollable microenvironments and thus poor 
reproducibility of organoids [8]. Furthermore, the mouse 
tumor origin of Matrigel limits its use for therapeutic trans-
plantation in vivo due to potential risks of immunogenicity and 
carcinogenicity [9]. A chemically defined extracellular matrix 
(ECM)-mimicking material that would allow the precise mod-
ulation of the physical and biochemical properties of cellular 
microenvironments and thus guarantees more consistent gen-
eration of organoids is urgently needed to achieve downstream 
translational applications such as drug screening, tissue engi-
neering, and personalized medicine. 

1j-organoid.org

Copyright © 2023 The Organoid Society
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

O

http://crossmark.crossref.org/dialog/?doi=10.51335/organoid.2023.3.e13&domain=pdf&date_stamp=2023-09-25


Natural biopolymers, which are biomacromolecules sourced 
from living organisms such as bacteria, plants, and animals, have 
become increasingly popular in the creation of hydrogels that 
mimic the ECM. These hydrogels provide three- dimensional 
support for organoids. This popularity is due to the molecular 
structures of natural biopolymers, which closely resemble the 
ECM, as well as their superior biocompatibility and biodegrad-
ability [10–13]. The high content of functional groups (for ex-
ample, hydroxyl, amino, and carboxylic acid groups) in natural 
biopolymers allows for the easy impartation of desired bioac-
tivities to cellular microenvironments [14]. This is particularly 
beneficial when customizing the microenvironmental cues of an 
artificial 3D matrix. In addition, the abundance of biopolymers 
in the natural world and their ability to be produced in a cost-ef-
fective manner make them highly attractive for organoid cul-
tures. These cultures can be utilized in various industrial fields, 
ranging from biomedicine (including regenerative therapy, bio-
banks, and personalized medicine), to foods, pharmaceuticals, 
and cosmetics. 

In this study, we present an overview of cutting-edge natural 
biopolymer-based hydrogels as a bioengineered matrix for or-
ganoid culture. First, we describe the important biochemical 
properties of natural biopolymers for the creation of hydrogels 
(Table 1). Next, we present recent advances in organoid cul-
turing in (1) polysaccharide- and (2) protein-based hydrogels. 
Finally, we examine the existing problems with these natural 

biopolymeric hydrogels for artificial ECM engineering, as well 
as future views and prospects. 

Preparation of natural biopolymer-based 
hydrogels 

Ethics statement: This study was a literature review of 
previously published studies and was therefore exempt 
from institutional review board approval.

Natural biopolymer-based hydrogels have been evaluated as 3D 
matrices for cell culture due to their ability to deliver superior 
nutrition to cells, protect cells and delicate medications, and 
have inherent biocompatibility [15]. The abundance of hydro-
philic groups in the backbone of these hydrogels contributes to 
the matrices’ high water absorption capacity, which is beneficial 
for cell growth [16]. The formation of complex structures, along 
with the enhancement of mechanical properties and stability in 
physiological environments, is achieved through inter/intramo-
lecular crosslinking within the biopolymeric chain. This cross-
linking responds to changes in environmental conditions such 
as pH and temperature, or the introduction of a crosslinking 
agent like a chemical crosslinker [17–21]. However, physical or 
chemical crosslinking can lead to a reduction in the availability 
of functional groups in biopolymers and poorer degradability 

Table 1. Summary of the general advantages and limitations of natural biopolymers for organoid cultures
Category Biopolymer Advantages Limitations
Polysaccharide Alginate Low toxicity Absence of a cell adhesion motif

Ease of manipulation Limited long-term stability
Low cost
Ease of gelation

Hyaluronic acid High bioactivity Poor degradation rate
Biological relevance Unfavorable mechanical properties
Chemical tunability

Heparin Affinity to various growth factors Supply and safety problems regarding animal sources
Cellulose Remarkable mechanical properties Limited application in the form of nanocellulose fibers

Protein Collagen Structural and mechanical properties reminiscent 
of native tissues

Low stiffness

Amenable to cell adhesion without modification Limited long-term stability
Batch-to-batch variability

Gelatin Low immunogenicity Poor mechanical properties
Amenable to cell adhesion without modification Short degradation time

Fibrin Abundant cell adhesion domain Poor mechanical properties
Recombinant protein Lot-to-lot repeatability Unpredictable properties from protein folding

Excellent design flexibility
Peptide Excellent design flexibility Poor mechanical properties

Highly predictable properties according to sequence
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[22]. Therefore, an effective crosslinking method is crucial for 
producing hydrogels intended for successful organoid applica-
tions (Fig. 1). 

Biopolymers can self-assemble into aggregates through re-
versible physical interactions such as hydrogen bonding, electro-
static interactions, hydrophobic interactions, or host-guest inter-
actions [23–27]. This process allows the creation of hydrogels 
under mild conditions without the need for crosslinking agents, 
which is beneficial for encapsulating cells or biomolecules, as it 
reduces the risk of unwanted interactions with bioactive agents 
[28]. Physically crosslinked biopolymeric hydrogels are often 
sensitive to changes in environmental factors such as pH, tem-
perature, or ionic strength, allowing for variations in hydrogel 
matrix mechanics [29]. The reversible nature of physically 
crosslinked hydrogels allows for dynamic behaviors such as 
shear-thinning or self-healing, as well as native ECM-like phys-
icochemical properties, which offer bioengineering options for 
enhanced organoid formation [30]. 

Covalently crosslinked biopolymeric hydrogels, which are 
produced by covalent bonds between polymer chains (e.g., 
thiol-ene click chemistry and Schiff ’s base reaction), have 
improved mechanical properties in vivo due to their relatively 
robust gel networks compared to those formed by physical in-
teractions [31]. The rapid gelation period of these hydrogels, 
typically less than 10 minutes, is achieved through strong cova-
lent bonding under physiologically moderate conditions. This 
has led to a particular interest in enzymatic crosslinking and 
photo-crosslinking for the in situ formation of hydrogel matrices 
[32,33]. Covalently crosslinked hydrogels, in general, act as 

linearly elastic materials, and organoid morphogenesis may be 
physically impeded owing to the poor dissipation of significant 
compressive pressures during colony expansion [34,35]. To 
circumvent the irreversible nature of covalent bonding, which 
causes the progressive softening of covalently crosslinked hydro-
gels, many techniques for enzymatic degradation [36–38], pho-
to-responsive degradation [39], and passive hydrolysis [34,40] 
have been proposed. 

Polysaccharide-based hydrogels 

Polysaccharides are polymeric carbohydrates that consist of 
multiple monosaccharide units covalently linked by glycosidic 
bonds [41,42]. Many polysaccharides possess ionizable func-
tional groups, such as amines (-NH3

+) in chitosan and carboxyl-
ates (-COO-) in hyaluronic acid (HA), and the distribution of 
those functional groups determines their charge density in dif-
ferent pH environments [43]. The physicochemical properties 
of polysaccharides can be modified through physical, chemical, 
and enzymatic processes [44]. Hydrogels based on polysaccha-
rides have recently gained attention as platforms for culturing 
and/or delivering organoids (Table 2) due to their high wa-
ter-retaining capacity, biocompatibility, and biodegradability 
[45–59]. 

1. Alginate-based hydrogels 
Alginate is a linear polysaccharide composed of negatively charged 
1,4-linked β-D-mannuronic acid (M-block) and α-L-guluronic 
acid (G-block) units (Fig. 2A). It is obtained from brown algae 

Fig. 1. Crosslinking strategies for generating natural biopolymer-based hydrogels.

Ionic  
crosslinking

Ionic  
crosslinker

Chemical  
crosslinking Photo-crosslinking Enzymatic 

crosslinking

–
Chemical  

crosslinker
Photo  

initiator
Enzyme

Organoid 2023;3:e13 • https://doi.org/10.51335/organoid.2023.3.e13

3j-organoid.org

O



Table 2. Polysaccharide-based hydrogels for organoid engineering
Biopolymer Fabrication method Organoid type Origin Cell source Features of hydrogel Ref.
Alginate Ionic crosslinking Intestine Mouse ASC Provides space for organoid growth [48]

Human PSC Provides space for organoid growth [47]
Pancreas Human ASC Supports dynamic culture of organoids 

in a microphysiological system
[49]

Rat ASC [49]
Lung Human ASC Allows a bead template for the 

alveolar sac
[50]

Norbornene-alginate Photocrosslinking Kidney Human iPSC Tunable mechanical properties without 
Ca2+ ions

[51]

Oxidized alginate Covalent crosslinking Kidney Human iPSC Allows dynamic reshuffling of the 
crosslinks in cell culture conditions

[52]

Hyaluronic acid Enzymatic crosslinking Bone marrow Human HSPC or BMSC Tunable physical and biological 
properties

[53]

Polyelectrolytic complexation Cerebral Human iPSC Provides space for organoid growth [54]
Heparin Peptide linker Kidney Human ASC Modulates growth factor release [55]

Maintains the polarization of proximal 
tubule cells

Mammary Human ASC Precisely controllable biochemical 
properties

[56]

Cellulose TEMPO-mediated oxidation Liver Human ASC Exhibits rapid self-healing and shear-
thinning behavior

[57]

Ionic crosslinking Intestine Mouse ASC Very low-cost but performant for 
organoid growth

[58,59]

Tunable and compatible with ECM-
components

Ref., reference, ASC, adult stem cell; PSC, pluripotent stem cell; iPSC, induced pluripotent stem cell; HSPC, hematopoietic stem and progeni-
tor cell; BMSC, bone marrow stromal cell; ECM, extracellular matrix.

through alkali treatment [47,60]. This polysaccharide, approved 
by the Food and Drug Administration, has garnered significant 
attention for cell encapsulation techniques due to its low toxic-
ity and ease of manipulation [60,61]. Alginate offers several ad-
vantages for organoid culture, including cost-effectiveness, the 
ability to modulate physical and biochemical properties [62,63], 
and its viscoelastic nature [64]. 

The addition of multivalent cations, with Ca2+ being the most 
commonly used, enables the rapid gelation of alginate through 
ionic crosslinking under mild conditions (Fig. 2B) [10,65]. 
Calcium-crosslinked alginate hydrogels (Ca-alginate hydrogels) 
have been explored for growing mouse small intestinal stem 
cell-derived intestinal organoids [48]. However, the colony for-
mation efficiency of mouse small intestinal stem cells within the 
Ca-alginate hydrogel was significantly lower compared to the 
counterpart grown in Matrigel (Fig. 2C and 2D). Conversely, 
another study has proposed that Ca-alginate hydrogel can sup-
port the growth and development of human intestinal organoids 
both in vitro and in vivo, despite its lack of cell adhesive proper-
ties (Fig. 2E and 2F) [47]. By culturing human pluripotent stem 
cell (PSC)-derived hindgut spheroids within a Ca-alginate hy-
drogel with an appropriate level of stiffness for approximately 30 
days, the researchers were able to generate intestinal organoids 

that closely resembled Matrigel-grown organoids. Moreover, the 
resulting Ca-alginate hydrogel-grown intestinal organoids ex-
hibited engraftment and maturation after transplantation in vivo 
to a similar extent as Matrigel-grown organoids, suggesting the 
potential applicability of Ca-alginate hydrogel as an alternative 
matrix to Matrigel for culturing intestinal organoids. 

Alginate’s inertness and biostability enable cell-specific spatio-
temporal imaging and tracking of cells trapped inside an alginate 
hydrogel for lengthy periods of time [66]. In general, embed-
ding organoids in 3D hydrogels reduces nutrient delivery during 
conventional static culture because the gel matrix functions as 
an additional barrier to solute diffusion, making the culture of 
organoids with high metabolic activity, such as islets, highly un-
stable for maintaining long-term cell viability and function [66]. 
However, the continuous dynamic culture of human and rodent 
pancreatic islets within a 3D alginate hydrogel gelled by BaCl2 
solution allowed for the elucidation of complex islet physiologi-
cal and pathophysiological processes via optical assessment and 
functional assays using a microphysiological system [49]. 

Alginate beads were crosslinked using BaCl2 and functional-
ized with type I collagen, in order to build a platform for disease 
modeling and medication development for lung illnesses such 
as idiopathic pulmonary fibrosis [50]. Culture of fetal lung 
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Fig. 2. Alginate-based hydrogels for intestinal organoid culture. (A) Chemical structure of alginate. (B) Schematic representation of Ca2+-
based ionic crosslinking of alginate. Reproduced from Jo and Lee. Small 2020;16:e1903736, with permission from John Wiley and Sons 
[10]. (C) Colony formation efficiency of mouse small intestinal stem cells in various hydrogel backbones with or without Matrigel sup-
plementation [48]. (D) Bright-field images of the cultures after 3 days of culture in different hydrogels and Matrigel. Scale bars: 200 μm. 
Reproduced and slightly modified from Broguiere et al. Adv Mater 2018;30:e1801621, with permission from John Wiley and Sons [48]. (E) 
Hematoxylin and eosin staining of intestinal organoids cultured in Ca-alginate hydrogel and Matrigel for 28 days. Dashed lines outline 
the epithelium. (F) Frequency of mature cell type differentiation in Ca-alginate hydrogel and Matrigel. Reproduced and slightly modified 
from Capeling et al. Stem Cell Rep 2019;12:381-94, with permission from Cell Press [47].
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fibroblasts with functionalized alginate beads resulted in the 
production of cohesive organoids as a consequence of cellular 
adhesion to the bead surface and subsequent cellular growth 
and contraction, enabling the formation of self-assembled hu-
man lung tissue encompassing numerous cell types. 

Alginate modification enables cation-free crosslinking of hy-
drogels, which may alter their mechanical characteristics and en-
hance bioactivity [47,67]. The covalent modification of alginate 
with norbornene (NB-alginate) results in a UV-crosslinkable 
hydrogel through thiol-ene chemistry, allowing the creation of 

an ECM-like environment that allows the unhindered passage 
of most nutrients in lower concentrations of hydrogel [51]. 
When compared to a standard culture technique on the air-liq-
uid interface, simple encapsulation of kidney organoids within 
the NB-alginate hydrogel resulted in lower expression of aber-
rant type 1a1 collagen, with no alterations in organoid structural 
shape. This synthetic microenvironment, which replicates the in 
vivo circumstances of the growing kidney, has shown the poten-
tial for producing organoids for therapeutic applications. 

Furthermore, the potential and relevance of modifying hy-
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drogel characteristics to regulate kidney organoids have been 
demonstrated using oxidized alginate hydrogels created by 
imine-type dynamic covalent crosslinking [52]. Kidney organ-
oids were encapsulated in three different stiffness levels (0.1-20 
kPa) of hydrogels and two soft hydrogels (0.1 kPa) with adjust-
able stress relaxation, following induced PSC (iPSC) differenti-
ation (7 days) and air-liquid interface culture (14 days). Kidney 
organoids grown in soft, rapidly relaxing hydrogels showed a 
higher degree of maturity in terms of renal structure formation 
and the expression of epithelial-mesenchymal transition mark-
ers, compared to those grown in stiffer or slow-relaxing hydro-
gels. 

2. Hyaluronic acid-based hydrogels 
The negatively charged polysaccharide HA is composed of 
D-glucuronic acid and N-acetyl-D-glucosamine. Because of its 
capacity to bind with transmembrane receptors (e.g., CD44, 
CD54, and CD168), HA, a non-sulfated glycosaminoglycan 
(GAG) abundantly found in the ECM, is implicated in different 
signaling cascades that impact cell attachment, migration, pro-
liferation, and morphogenesis [68]. HA may be used to create 
organoid microenvironments because of its high bioactivity; 
however, its poor degradation rates and unfavorable mechanical 
properties make it difficult to apply alone in hard tissue [69]. 
Hybrid hydrogels formed by incorporating HA into enzymati-
cally crosslinked poly(ethylene glycol) (PEG) matrices demon-
strated the ability to maintain, expand, or differentiate human 
bone marrow-derived stromal cells and human hematopoietic 
stem cells in vitro, eventually generating bone marrow organoids 
[53]. Furthermore, another HA/chitosan hybrid hydrogel has 
been reported to promote cerebral organoid development by 
iPSC culture in Essential 8 (E8) media without the inclusion of 
neural induction components [54]. Within 10 to 14 days of cul-
ture, iPSCs encapsulated in the HA-chitosan hydrogel showed 
morphological features of cerebral organoids and growth up to 
3 mm in the greatest dimension at day 28, while exhibiting spe-
cific behaviors of early corticogenesis (e.g., neural rosette and 
neural tube-like structures). 

3. Heparin-based hydrogels 
Heparin is a negatively charged polysaccharide composed of 
L-iduronic acid and D-glucosamine repeats [70]. This highly 
sulfated GAG molecule has been shown to regulate cell signal-
ing by sequestering heparin-binding domain-associated growth 
factors [71], as well as blocking coagulation and thrombosis 
[72]. Heparin’s capacity to bind and stabilize numerous growth 
factors and proteins, in particular, makes it useful as a building 

element of 3D matrices for organoid cultures [73,74]. The use 
of a matrix metalloproteinase-cleavable peptide linker to cross-
link heparin hydrogel with 4-armed PEG was shown to stimulate 
the morphogenesis of proximal tubule epithelial cells (HK-2) 
into physiologically sized tubule structures [55]. The resultant 
tubules demonstrated the form and function of the in vivo renal 
proximal tubule and responded to nephrotoxins, demonstrating 
their potential for disease modeling and medication toxicity 
research. This heparin hydrogel was also used to cultivate multi-
cellular polarized mammary epithelial organoids [56]. Human 
mammary epithelial cells immersed in heparin-based hydrogel 
demonstrated laminin secretion and organization into basement 
membrane-like assemblies, enhancing integrin signaling and 
encouraging the creation of polarized acini. 

4. Cellulose-based hydrogels 
Cellulose is a plant-derived structural polysaccharide that is 
separated into nanofibers with diameters ranging from 2 to 
60 nm [75,76]. The oxidation mediated by 2,2,6,6-tetrameth-
ylpiperidine-1-oxyl (TEMPO) enables the conversion of 
cellulose strands’ main alcohol groups into negatively charged 
carboxyl groups (Fig. 3A) [77]. When compared to Matrigel, 
the resulting cellulose nanofibrils (CNFs) form hydrogels with 
remarkable mechanical properties, such as rapid self-healing and 
shear-thinning behavior, supporting the differentiation of liver 
organoids, while exhibiting comparable or even superior levels 
of hepatic gene expression, hepatocyte function and organoid 
polarization [57]. The functionalization of oxidized CNFs with 
a fibronectin-derived cell adhesion moiety, RGD peptide, has 
shown promise in improving cellular contact between organoids 
and the cellulose backbone (Fig. 3B and 3C) [58]. Ca2+-medi-
ated ionic crosslinking between CNF carboxyl groups created 
a milieu conductive to the development and budding of tiny 
intestine organoids. Furthermore, TEMPO-periodate oxidation 
has been shown to allow the incorporation of a greater number 
of carboxyl groups into the cellulose molecule [78], resulting 
in the functionalization of CNFs with more RGD peptides 
than CNFs treated alone with TEMPO-mediated oxidation 
[59]. Mg2+-generated RGD-grafted CNF-based hydrogel-based 
cationic crosslinking aided in the development of intestinal or-
ganoids, while also enabling their long-term culture following 
passage. 

Protein-based hydrogels 

Proteins are biomacromolecules composed of numerous amino 
acids linked by peptide bonds [79,80]. They serve as the essen-
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tial building blocks for highly structured systems that underpin 
life's critical functions [10]. The sequence of amino acids in a 
polypeptide chain dictates the protein's physicochemical prop-
erties, such as molecular weight, shape, and hydrophobicity, as 
well as its biological characteristics [43,79,80]. The process of 
proteins unfolding and refolding mechanically results in inher-
ent viscoelasticity, akin to that of the ECM [81]. The limitless 
design possibilities and diverse functions of proteins, coupled 
with their excellent biocompatibility and biodegradability [82], 
make them particularly attractive for creating hydrogel matrices 
for organoid cultures (Table 3) [48,83–97]. 

1. Collagen-based hydrogels 
Collagen is the most prevalent ECM protein, providing me-
chanical support to vertebrate connective tissues and promoting 
cell proliferation, migration, and differentiation [83,98,99]. The 
main structure of collagen is a triple-stranded helix stabilized by 
intra- and inter-chain hydrogen bonding, which is responsible 
for collagen’s thermo-responsive activity [100,101]. Due to its 
low antigenicity and high mechanical strength, collagen is often 
proposed for the construction of fibrous matrices in organoid 
culture [67,84,85,102]. In particular, the biomimetic properties 
of collagen make its hydrogel amenable to cell adhesion without 
modification and capable of presenting a native viscoelastic en-
vironment for resident cells [98]. 

Fig. 3. Cellulose-based hydrogels for culture of intestinal organoids. (A) Schematic description of TEMPO-mediated oxidation of cellulose. 
(B) Scheme of small intestinal organoids cultured in an oxidized cellulose nanofiber (CNF)-based hydrogel [58]. (C) Intestinal organoids 
cultured in oxidized CNF hydrogels. Cystic organoids are generated only upon the addition of glycine (GLY). The growth of organoids is 
sustained in the hydrogel of CNFs functionalized with RGD peptide. Scale bars: 100 μm. Reproduced from Curvello et al. Adv Sci (Weinh) 
2020;8:2002135, with permission from John Wiley and Sons [58].
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Collagen-based hydrogels have been shown to facilitate the 
growth of mouse and human organoids for the gastrointesti-
nal system, including the small intestine, colon, and stomach, 
in non-toxic, favorable environments for both organoids and 
normal tissue [86]. These collagen hydrogels exhibit ther-
mo-responsive behavior, transforming into a solution at lower 
temperatures of 4 to 8 °C and a gel when heated to 37 °C. When 
compared to Matrigel-grown organoids, the organoids produced 
in collagen hydrogels had identical shapes, specific markers, and 
proliferation rates. Notably, in an ethylenediaminetetraacetic 
acid-colitis animal model, the transplantation of mouse colon 
organoids with the collagen hydrogel resulted in effective en-
graftment in injured tissue, showing the usefulness of regenera-
tive medicine in vivo [86]. After in vivo engraftment, mouse and 
human intestinal organoids co-cultured with intestinal subepi-
thelial myofibroblasts in collagen hydrogel recapitulated an au-
tonomous experimental stem cell niche [85,87]. Furthermore, 
centimeter-long macroscopic units of intestinal epithelium were 
generated by embedding intestinal organoids in a floating colla-
gen hydrogel [84]. Proliferating organoids aligned and fused to 
form a hollow structure of epithelial tubes containing all intes-
tine-specific cell types, including Lgr5+ stem cells. The combi-
nation of collagen and CNFs has been investigated as a way to 
produce hybrid hydrogels with improved mechanical properties 
and bioactive effects, allowing the embedded crypts to undergo 

epithelial budding while maintaining cell viability and metabolic 
activity and expressing tissue-specific cell markers [88]. 

Human basal cells placed in floating collagen hydrogels grew 
mammary gland organoids, demonstrating the role of mechan-
ical signals in controlling ductal branch elongation [89]. This 
process involved the cells migrating back and 4th within the 
surrounding collagen network, generating tension, promoting 
branch outgrowth, and causing plastic deformation of the ma-
trix. The identified equilibrium of mechanical tension has been 
suggested as a promising area for future research into branching 
morphogenesis during organogenesis. 

2. Gelatin-based hydrogels 
Gelatin is a fibrous protein generated from the denaturation or 
hydrolysis of native collagen that is more water-soluble and less 
immunogenic than collagen [103–105]. It forms gels at approx-
imately 30 °C by transitioning gelatin chains from disordered 
random coils to ordered helices through hydrogen bonding 
[106]. This process results in an intermediate biological com-
plexity matrix following in situ gelation [101]. In addition, sev-
eral advantageous properties of gelatin, such as biocompatibility, 
biodegradability, and the capability to promote cell adhesion 
and proliferation, make it highly attractive for organoid appli-
cations [103,105]. However, the poor mechanical properties 
and short degradation times, especially under physiological 

Table 3. Protein-based hydrogels for organoid engineering
Biopolymer Fabrication method Organoid type Origin Cell source Features of hydrogel Ref.
Collagen Thermal crosslinking Intestine Mouse ASC Easily tunable physical properties [83,84,87,88]

Human ASC [85]
Colon Mouse ASC Easily tunable physical properties [86]

Human ASC [86]
Stomach Mouse ASC Easily tunable physical properties [86]
Mammary gland Human ASC Exhibits mechanical plasticity [89]

Gelatin Enzymatic crosslinking Liver Human ASC Tunable physical and biological properties [90]
Fibrin Enzymatic crosslinking Intestine Mouse ASC Provides physical support and RGD adhesion 

domains
[48]

Human ASC [48]
Pancreas Human ASC Provides physical support and RGD adhesion 

domains
[48]

Liver Human ASC Provides physical support and RGD adhesion 
domains

[48]

iPSC Provides a controllable and stable 
environment for organoid generation

[91]

Recombinant protein Chemical crosslinking Intestine Mouse ASC Tunable physical and biological properties [92]
Self-assembly Pancreas Mouse ASC Tunable physical and biological properties [93]
Thermal crosslinking Cerebral Human PSC Easy to functionalize with bioactive molecules [94,95]

Reduces inter-organoid variability
Peptide Chemical crosslinking Cerebral Rat PSC Tunable physical and biological properties [97]

Self-assembly Kidney Human iPSC Tunable physical and biological properties [96]

Ref., reference, ASC, adult stem cell; PSC, pluripotent stem cell; iPSC, induced pluripotent stem cell.
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conditions, of native gelatin necessitate crosslinking for practical 
applications [107]. The covalent crosslinking of a gelatin-based 
hydrogel with 8-arm PEG was achieved through an enzymatic 
reaction with coagulation factor XIII (FXIII) [90]. This hybrid 
hydrogel demonstrated the ability to support cell differentia-
tion and matrix secretion for liver organoid creation, with the 
potential to further stimulate tissue development by fine-tuning 
hydrogels and covalently immobilizing essential proteins. 

3. Fibrin-based hydrogels 
Fibrin is a blood protein formed by the activation of the serine 
protease thrombin during the coagulation process [108]. It 
possesses an abundance of naturally occurring RGD adhesion 
domains, which makes it useful as a substrate for cell prolif-
eration and improved ECM deposition [108,109]. However, 
like other natural biopolymeric materials, fibrin has poor me-

chanical properties, necessitating a crosslinking approach [98]. 
FXIII-mediated enzymatic crosslinking of fibrin-based hydro-
gels has been used to enable the development of mouse intesti-
nal organoids, as well as human intestinal, pancreatic, and liver 
organoids [48]. Notably, the combination of internal pressure 
and increased cell contractility inside the hydrogel enabled the 
formation of budding intestine organoids. Furthermore, laminin 
supplementation supported the long-term development of all 
tested epithelial organoids, demonstrating its effectiveness as a 
specific alternative to Matrigel. 

An oil-free droplet microfluidic method was designed to 
fabricate hydrogel capsules with a fibrin hydrogel core and an 
alginate-chitosan composite shell in a single step (Fig. 4A) [91]. 
The produced hydrogel capsules with the prescribed composi-
tions demonstrated good homogeneity and stability, as well as 
outstanding biocompatibility and high-throughput productiv-

Fig. 4. Fibrin-based composite hydrogel capsules for culture of liver organoids. (A) Schematic description of the oil-free droplet microflu-
idic system to fabricate composite hydrogel capsules with a fibrin hydrogel core and alginate-chitosan composite shell. (B) Immunohisto-
chemical staining images of hepatocyte markers (ALB and CYP3A4) and cholangiocyte markers (CK7 and CK19) in liver organoids after 7 
days of encapsulation in capsules. Scale bars: 50 μm. (C) Albumin secretion and (D) urea synthesis in liver organoids after encapsulation 
of 2, 4, 6 and 8 days. Reproduced from Wang et al. Biomater Sci 2020;8:5476-88, with permission from the Royal Society of Chemistry 
[91].
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ity. Human iPSC-derived hepatic cells self-organized into liver 
organoids with consistent sizes, composed of hepatocyte- and 
cholangiocyte-like cells in the core hydrogel generated by the 
enzymatic reaction of fibrinogen and thrombin (Fig. 4B). The 
produced liver organoids demonstrated the preservation of liv-
er-specific activities, such as urea production and albumin secre-
tion, indicating a successful recapitulation of the fundamental 
properties of the human liver (Fig. 4C and 4D). 

4. Recombinant protein-based hydrogels 
Over the past two decades, recombinant protein-based hydro-
gels have advanced rapidly, thanks to considerable improve-
ments in recombinant DNA technology and protein engineer-
ing [110–113]. In general, recombinant protein-based hydrogels 
demonstrate superior mechanical properties and consistency 
between batches when compared to their natural protein-based 
counterparts [110,114–116]. Genetic engineering of the amino 
acid sequence allows for precise control over the structural and 
functional aspects of protein building blocks, such as folding 
structure, chain length, and stereochemistry [117]. Specifically, 
the integration of signaling sequences into recombinant proteins 
provides the building blocks for artificial microenvironments 
that mimic the ECM [118–120]. 

Elastin-like proteins (ELPs) are recombinantly produced 
protein polymers consisting of conserved repeating units, as ob-
served in tropoelastin’s hydrophobic domains (Fig. 5A) [121]. 
The pentapeptide Val-Pro-Gly-Val-Gly (VPGVG) is the most 
common repeating motif with lower critical solution tempera-
ture phase behavior [121,122]. Most ELPs are composed of the 
Val-Pro-Gly-X-Gly (VPGXG) pentapeptide repeat, where dif-
ferent physicochemical features may be accurately programmed 
depending on which amino acid is present in the guest residue 
“X” [123]. ELPs offer a modulable design due to their inherent 
biocompatibility, biodegradability, stimuli-responsiveness, and 
viscoelastic properties, making them potential biomaterials for 
3D cell cultures, including ECM mimetics [123]. A genetic 
union of an ELP-based structural backbone with a fibronec-
tin-derived, cell-adhesive, extended RGD sequence resulted in 
the development of a recombinantly designed ECM (Fig. 5B) 
[92]. Engineered ECM-based hydrogels were created by chem-
ically crosslinking lysine residues with tetrakis(hydroxymethyl) 
phosphonium chloride and provided a microenvironment suit-
able for the formation and growth of mouse intestinal organoids 
by providing cell adhesive biochemical cues and elastomeric 
biomechanical cues. A recombinant triblock protein (PEP) 
made up of two leucine zippers (P) separated by an ELP (E) was 
also used to create a 3D matrix for organoid development (Fig. 

5C) [93]. The PEP protein can self-associate into hydrogels 
thanks to its coiled-coil helix domains. Furthermore, combining 
PEP with cell-binding ECM motifs derived from fibronectin or 
laminin alpha 3, which are key components in pancreatic endo-
crine activities, resulted in the formation of pancreatic organoids 
composed of primary endocrine and endocrine progenitor cells. 

Spider silk, due to its exceptional biocompatibility and unique 
mechanical properties, can be utilized to construct 3D matrices 
for organoid culturing [124]. Recombinant spider silk, which 
is inspired by its natural counterpart, has been suggested as a 

Fig. 5. Molecular structures of elastin-like proteins (ELPs). (A) 
Schematic representation of amino acid sequence domain ar-
rangement in tropoelastin. Yellow rectangles indicate hydropho-
bic domains. Reproduced from Acosta et al. Adv Funct Mater 
2020;30:1909050, with permission from John Wiley and Sons 
[123]. (B) Scheme of an engineered extracellular matrix (eECM) 
polypeptide chain with an extended, cell-adhesive RGD domain. 
Reproduced from DiMarco et al. Biomater Sci 2015;3:1376-85 
[92]. (C) Scheme of PEP-FN and PEP-LAMA3 proteins containing 
leucine zipper (green), ELPs (yellow), and the cell binding peptide 
(blue). Reproduced from Kozlowski et al. Front Bioeng Biotechnol 
2023;11:1144209, according to the Creative Commons license 
[93].
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consistent and highly reproducible scaffold material for 3D cell 
culturing [125]. Microfibers of recombinant spider silk protein 
undergo thermal transition polymerization, resulting in sturdy, 
elastic, and biocompatible matrices that facilitate the self-as-
sembly of human PSCs into cerebral organoids [94,95]. When 
human PSCs are introduced into these silk microfiber networks, 
they stimulate neuroectoderm development and organoid mat-
uration in relation to neuronal functioning [95]. 

5. Peptide-based hydrogels 
Peptides, which are short chains of naturally occurring amino 
acids (usually 2 to 50 residues) connected by peptide bonds, can 
also be used to combine the beneficial qualities of natural and 
synthetic matrices for organoid cultures [126]. The simplicity 
of peptides’ structure allows for a more predictable design of 
hydrogels based on their sequences, compared to recombinant 
proteins, despite their relatively lower mechanical properties 
[127]. Among these, self-assembling peptides have been en-
gineered to spontaneously form fibrillar structures in aqueous 
solutions, leading to physical gelation with architecture and 
characteristics similar to native ECM [127,128]. When human 
iPSCs were implanted in self-assembling peptide hydrogels, 
they successfully generated kidney organoids with complex 
architectures comparable to those in Matrigel [96]. Moreover, 
chemically crosslinked peptide hydrogels composed of specific 
ECM protein-mimicking fragments, such as collagen-like pep-
tide (CLP) and CLP combined with RGD peptide (CLP-RGD), 
showed improved neural cell differentiation. This resulted in the 
rapid development of self-assembled cerebellar organoids [97]. 
Primary cerebellar cells spontaneously organized into tissue-like 
clusters capable of producing action potentials within the elas-
tomechanical environment of ECM-mimetic matrices of CLP-
based hydrogels. 

Summary and perspectives 

In this review, we highlight recent advances in natural hydrogels 
composed of polysaccharides or proteins, specifically for the 
production of organoids. These hydrogels have significant bio-
logical and biomedical applications, including developmental 
studies, disease modeling, drug screening, and regenerative 
medicine. Natural biopolymer-based hydrogels, due to their 
inherent benefits such as high activity (for instance, a wealth of 
cell recognition motifs), superior biocompatibility, and excellent 
degradability, have proven to be ideal for organoid culture. This 
is because they can mimic the microenvironmental features of 
the ECM. The molecular behaviors of natural biopolymers can 

be altered through physical or chemical crosslinking, chemical 
modification, or by combining them with other materials. This 
results in 3D matrices with mechanical and biochemical prop-
erties that encourage organoid growth, proliferation, or differ-
entiation. The use of such natural biopolymeric hydrogels holds 
significant potential, especially for transplantation treatments. 
This is because they can reduce health risks associated with syn-
thetic polymers, such as unwanted immunogenicity and in vivo 
toxicity [11]. 

However, significant material considerations need to be 
addressed for biopolymeric hydrogels to replace traditional 
Matrigel and be used as next-generation matrices in organoid 
technology: (1) Due to the lot-to-lot variability of biopolymers, 
consistently controlling the size and cellular composition of 
biopolymeric hydrogel-based organoids is a significant problem 
[129–134]. More comprehensive efforts to standardize the 
structural and functional features of biopolymeric hydrogels are 
required to make bioengineered matrices more effective and 
predictable. (2) To accurately replicate the dynamic process of 
organoid formation, the matrix material must be engineered to 
modify the microenvironment and surrounding stromal matrix 
in a spatiotemporally controlled manner. Natural biopolymers 
can change their physical and biochemical characteristics in re-
sponse to stimuli commonly found in biological environments, 
such as light, temperature, and pH [10,135]. By controlling 
biomaterial parameters such as structural geometry, mechanical 
properties, and cell-binding ligands, this inherent stimulus-re-
sponsive behavior can be advantageously applied to the organ-
oid system to better mimic the dynamic changes in extracellular 
microenvironmental inputs derived from the evolution of 
biological properties. (3) Integrative solutions combining bio-
polymeric hydrogel-based organoids with droplet microfluidics 
are highly desired as a future approach in organoid engineering. 
This approach would provide a programmable 3D scaffold for 
synthesizing organoids in a high-throughput manner. Recent 
studies suggest that microfluidic technologies, which allow for 
precise control of organoids and dynamic physical conditions, 
could be used to produce large quantities of highly uniform or-
ganoids in biopolymeric microdroplet hydrogels [136]. While 
this method holds great potential, especially for high-through-
put drug candidate screening [137,138], it is still in the early 
stages of development. (4) Through 3D methods such as 
bioprinting, biopolymeric hydrogel-based organoids could be 
used as a building block to assemble larger, more complicated 
structures resembling genuine organs [139–142]. The design 
of biopolymeric hydrogels should allow for the embedding of 
organoids while incorporating their unique mechanical and bio-
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chemical properties to achieve the desired bulk properties. This 
would allow for the inclusion of key tissue compartments of 
native organs, such as the immune system and vascularization.  

By addressing the aforementioned challenges through the 
integration of multiple disciplines, such as stem cell biology 
and materials engineering, natural biopolymer-based hydrogels 
could become an emerging framework to achieve cellular diver-
sity, maturation, and full functionality of organoids with greater 
controllability and fidelity, facilitating an eventual shift away 
from the use of Matrigel and opening up a large design space to 
transform the field of numerous downstream translational appli-
cations. 
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