
Introduction 

The telencephalon comprises major areas in the mammalian 
brain with several important components, including the cerebral 
cortex, limbic system, basal ganglia, and the olfactory system 
[1,2]. The development of the telencephalon, which has several 
distinct parts, requires an interplay of diverse signaling pathways 
that are tightly regulated from the embryonic to the adult stages. 
In addition, various diseases related to telencephalon devel-
opment arise due to genetic mutations or external factors [3]. 
Despite significant progress over the past decades in uncovering 
the mechanisms of brain development and pathophysiology, 
the intricate structure and function of the brain present a major 
challenge. Recently, models known as brain organoids have 
been developed to mimic the developing human brain [4]. 
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The telencephalon is the largest region of the brain and processes critical brain activity. De-
spite much progress, our understanding of the telencephalon’s function, development, and 
pathophysiological processes remains largely incomplete. Recently, 3-dimensional brain mod-
els, known as brain organoids, have attracted considerable attention in modern neurobiologi-
cal research. Brain organoids have been proven to be valuable for studying the neurodevel-
opmental principles and pathophysiology of the brain, as well as for developing potential 
therapeutics. Brain organoids can change the paradigm of current research, replacing animal 
models. However, there are still limitations, and efforts are needed to improve brain organoid 
models. In this review, we provide an overview of the development and function of the telen-
cephalon, as well as the techniques and scientific methods used to create fully developed 
telencephalon organoids. Additionally, we explore the limitations and challenges of current 
brain organoids and potential future advancements. 
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Brain organoid technologies are excellent platforms for probing 
brain development, pathophysiology, and mechanisms. In this 
review paper, we will provide a brief overview of telencephalon 
development and telencephalon brain organoids, and we will 
also discuss the limitations of the current organoid system and 
future perspectives. 

The telencephalon: an overview 

Ethics statement: This study constituted a comprehensive 
analysis of previously released studies and thus, was not 
subject to the approval of the institutional review board.

The forebrain, also called the prosencephalon, comprises the 
largest part of the brain. It plays a key role in sensory process-
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ing, perception, and cognitive functions related to information 
processing [5,6]. The forebrain is divided into 2 regions: the 
telencephalon and the diencephalon. The telencephalon oc-
cupies the largest part of the central nervous system [7]. It is 
responsible for olfactory processing as well as speech, language, 
and memory formation. The main component of the telenceph-
alon is the cerebral cortex, which is further divided into 4 lobes: 
the frontal, parietal, occipital, and temporal lobes [6]. The dien-
cephalon is divided into 3 parts (the thalamus, epithalamus, and 
subthalamus) and has the function of maintaining homeostasis 
in the body [7]. The hypothalamus arises developmentally 
from the telencephalon, while anatomically it is adjacent to the 
regions from the diencephalon. Overall, the telencephalon and 
diencephalon have different roles, but they closely interact to 
perform their essential functions. 

The frontal lobe, which is located at the front of the cerebrum, 
governs higher mental functions such as memory, thinking, and 
reasoning. It processes information from other association areas 
and regulates behavior. Damage to the frontal lobe often leads to 
a loss of problem-solving abilities and the capacity to plan and 
execute actions, such as crossing a street or answering complex 
questions [8,9]. Frontal lobe syndrome is a common condition 
associated with this area, and there are instances where a per-
son’s behavior or personality changes due to trauma or various 
diseases [10]. The temporal lobe is the lateral part of the cortex. 
The right temporal lobe controls the left side of the body, and 
the left temporal lobe controls the right side. Functionally, it is 
mainly responsible for auditory stimulation, language, and emo-
tional response. The medial temporal lobe includes the amygda-
la and hippocampus, which are the main structures forming the 
limbic system and play a critical role in memory function [11]. 
Temporal lobe epilepsy is one of the most common types of 
epilepsy in adults, and it is most frequently caused by sclerosis 
of the medial temporal lobe, particularly the hippocampus [12]. 
The occipital lobe is found at the back of the cerebral cortex and 
is the smallest lobe. Its functions primarily involve processing 
visual information coming from the eye. The primary visual cor-
tex is the visual center of the occipital lobe. Visual information 
processed here is divided into 2 pathways: one towards the pa-
rietal lobe and the other towards the temporal lobe. The dorsal 
pathway to the parietal lobe processes visual information about 
moving objects, such as position, speed, and distance, as well as 
information about eye and body movements. The ventral path-
way to the temporal lobe is responsible for judging the color 
and shape of the object being viewed by comparing it with ex-
isting images, and contributes to the long-term storage of visual 
memory [13]. Balint’s syndrome, characterized by severe spatial 

deficits and neuropsychological disorders, is a representative 
disease associated with this lobe [14]. The parietal lobe, which 
is located just behind the central sulcus in the cerebral cortex, 
is responsible for perceiving tactile and spatial senses and re-
sponding to the movement of objects in sight. It also integrates 
information from the outside world, combining letters into 
words to give them meaning [15,16]. Gerstmann syndrome, 
which causes learning disabilities and cognitive impairment, is a 
condition that can occur when the parietal lobe is damaged [17]. 

Early telencephalon development: a tale 
of signaling in neurogenesis. 

The human brain development process consists of the gener-
ation, migration, and differentiation of neurons, as well as the 
maturation and formation of synapses [18]. Inhibitors of bone 
morphogenic protein (BMP), secreted from the organizer, 
induce the ectoderm to transform into nervous tissue, thereby 
forming a neural plate through morphogenesis [19]. The neural 
plate then folds in on itself to form the neural tube, with dorsal/
ventral and anterior/posterior fates being patterned by the col-
lective influence of signaling molecules (Fig. 1) [20]. 

In the early stage of embryonic development, the central 
nervous system is subdivided into the forebrain, midbrain, 
hindbrain, and spinal cord along the anterior-posterior axis 
[21]. Various signaling pathways mediate this anterior-poste-
rior patterning. The telencephalon originates from cells at the 
rostral part of the neural plate [22]. Wnts are known to play an 
important role in rostral-caudalization; thus, proper regulation 
of the interaction of Wnts and their antagonists is crucial in the 
establishment of the telencephalon [23]. Once the anterior 
and posterior of the neural plate are formed, the telencephalon 
undergoes dorsal-ventral patterning [24]. The telencephalon in 
mammals develops as the pallium of the dorsal region and the 
subpallium of the ventral region by dorsal-ventral patterning. 
The pallium is further divided into 4 regions: dorsal, medial, 
lateral, and ventral [25]. The dorsal pallium develops into the 
neocortex, which has the most complex structure in mammals. 
The medial pallium gives rise to the medial entorhinal cortex, 
hippocampus, cortical hem, and choroid plexus. The insular 
cortex and the lateral entorhinal cortex are known to originate 
from the lateral pallium. The ventral portion at the pallial-sub-
pallial boundary gives rise to the amygdala [26–28]. In contrast, 
lateral, medial, and caudal ganglionic eminences (LGE, MGE, 
and CGE) in the subpallium develop as the basal ganglia [29]. 
Specific domains of the early telencephalon produce distinct 
sets of neurons and eventually generate the neural network of 
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the mature telencephalon. 
The regional patterning of the telencephalon is regulated by 

various morphogens, including Wnt, BMP, retinoic acid (RA), 
sonic hedgehog (Shh), and fibroblast growth factor (FGF). 
BMP or Wnt signaling is required for dorsal patterning of the 
telencephalon, while Shh signaling is important for ventral pat-
terning, and RA is crucial for lateral patterning [22,25,30]. Wnts 
are expressed at the dorsal midline of the telencephalon, known 
as the cortical hem. Wnt signaling is important for patterning 
the medial pallium, which later develops into the hippocampus 
and medial entorhinal cortex [26,31]. When Wnt3a is knocked 
out and Wnt signaling is lost, the mouse hippocampus does 
not develop normally [32,33]. Furthermore, the hippocampus 
develops poorly in LEF1-knockout mice, a transcription fac-
tor known as a target gene for Wnt/β-catenin signaling [34]. 
BMPs are secreted from the lateral edges and dorsal midline of 
the neural plate. They enhance dorsomedial identity and the 
development of the choroid plexus [35,36]. The Shh signaling 
pathway is mediated by Smoothened, which specifies the ven-
tral telencephalon [37]. The major source of Shh is the cells of 
the floor plate in the neural tube [38]. Under tight control of 
the gradient of Shh signaling, the ventral telencephalon gives 
rise to various ganglionic eminences (medial, caudal, and later-
al) [39,40]. The ventral telencephalon in Shh-knockout mice 
displays the absence of expression of the telencephalon ventral 
markers Nkx2.1, Dlx2, and Gsx2 in neural progenitor cells [41]. 

Brain organoids: in vitro models of the 
human brain telencephalon 

Over the years, researchers have actively used neural stem cells 
and neurons in cell culture systems, typically in 2-dimensional 
(2D) culture formats, or animal models to study the neural 
system. The use of cells in 2D culture is straightforward for 
addressing questions directly related to intrinsic cell features. 
However, this approach does not account for the interaction 
between the cells and the extracellular substrate found in tissue. 
Furthermore, the cerebral cortex is primarily composed of 6 
laminar layers, a complexity that 2D culture cannot replicate 
[42]. Animal models have limitations in reproducing human 
responses due to species differences, necessitating new model 
systems. 

The establishment of stem cell culture conditions and 3-di-
mensional (3D) culture techniques enabled the development of 
brain organoids (Fig. 2) [43]. Organoids are constructed by cul-
turing self-organizing cells with multicellular structures that rep-
resent complex in vivo cellular behavior and interactions. One 
of the main advantages of organoids is that they are much more 
similar to organs or tissues than conventional 2D cultured cells, 
while experimental approaches are much simpler than in animal 
models [44]. In general, brain organoids are differentiated by 2 
approaches with distinct patterning steps: guided versus unguid-
ed. Unguided organoids are generated using minimal exogenous 
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Fig. 1. Development of the neural tube. (A) Three primary vesicles in neural tubes develop into diverse brain areas. Expression of morpho-
gens, fibroblast growth factor (FGF) 8, sonic hedgehog (Shh), and Wnt in neural tubes. (B) Morphogen gradients to specify the develop-
mental axis for dorsal/ventral and rostral/caudal axis.
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factors. This method was first attempted by the Knoblich group, 
who embedded 3D neuroepithelial spheroids in Matrigel and 
spinning environments to replicate the development of the hu-
man brain [45]. Another method is the guided method, which 
adds exogenous factors such as FGF, Wnt, BMP, RA, and Shh 
to produce brain organoids with a specific regional identity [46-
49]. The guided approach was first tried by the Sasai group [50]. 
Table 1 summarizes the methods of generating brain organoids 
related to telencephalic regions [51–69]. 

Dual-SMAD inhibitors for the transforming growth fac-
tor-beta (TGF-β)/Activin/Nodal and BMP pathways have 
been widely used to induce neural differentiation [70,71]. The 
TGF-β/Activin/Nodal pathway is essential for self-renewal and 

endoderm differentiation, and the BMP pathway regulates me-
sodermal differentiation. Upon the inhibition of these pathways, 
pluripotent stem cells undergo neuroectoderm differentiation. 
The neural progenitors further acquire the regional identities 
according to the given regionalization cues [72]. During brain 
development, the regional identity of each brain region is estab-
lished by patterning the neural tube with morphogens secreted 
from the organizers [73]. Strategies to generate region-specific 
brain organoids have been reported by applying these princi-
ples. To achieve telencephalic identity, an antagonist of Wnt 
signaling, a caudalizing factor, is used together with dual-SMAD 
inhibitors [46,72]. Several groups have used SMAD inhibitors 
and Wnt inhibitors to generate cortical organoids that resemble 
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Fig. 2. Schematics to generate brain organoids. (A) General steps for generating brain organoids. Methods of culturing organoids in 3-di-
mensional (3D) and maintaining the organoids in 3D are shown. (B) The unguided approach to produce whole-brain organoids, or cere-
bral organoids, and the guided approach to produce regionally defined brain organoids. hPSC, human pluripotent stem cell; EB, embryoid 
body; NE, neural ectoderm.
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the dorsal telencephalon identity [74,75]. These cortical or-
ganoids are mainly composed of glutamate neurons, as well as 
progenitor cells and glial cells. 

In addition, organoids representing specific telencephalic 
regions other than the cortex have been reported based on 
the combined use of patterning molecules such as BMP4, 
Wnt, and Shh. The cortical hem plays an important role in 
the development of dorsomedial telencephalic tissues such as 
the hippocampus, choroid plexus, and entorhinal cortex by 
providing Wnt and BMP [26,31,76]. In 2014, the Sasai group 
generated floating EB-like aggregates (SFEBq) resembling the 
hippocampus and choroid plexus using BMP4 and the Wnt ac-
tivator CHIR99021. To induce the medial pallium fate, specific 

durations and doses of CHIR99021 and BMP4 were used, and 
organoids with cellular identities for the hippocampus and cho-
roid plexus were generated. However, the choroid plexus-like 
structure in SFEBq was not shown to produce cerebrospinal 
fluid (CSF) [66]. A recent study on the generation of a choroid 
plexus organoid reported the generation of a CSF-like fluid sim-
ilar to the in vivo choroid plexus [69]. More recently, the Ming 
group generated a choroid plexus expressing TTR, AQP1, and 
OTX2 by using high doses of BMP7 and CHR99021. These 
organoids were also used to model the impact of SARS-CoV-2 
infection in disrupting the barrier integrity of the choroid plexus 
[68]. Hippocampus organoids were also generated by treatment 
with CHIR99021 alone [67]. 

Table 1. Overview of current telencephalon-related brain organoid protocols

Methodology Type of brain region Type of organoid Extrinsic factors Culture method Extracellular 
scaffolding Reference

Unguided method Whole brain Cerebral organoid Low bFGF Spinning bioreactor Matrigel [51]
Cerebral organoid Low bFGF Spinning bioreactor Matrigel [52]

Forebrain Cerebral organoid Low bFGF Spinning bioreactor Matrigel [53]
Cerebral organoid Low bFGF Spinning bioreactor Matrigel [54]
Cerebral organoids Low bFGF Spinning bioreactor Matrigel [55]

Guided method Cerebral cortex Cortical spheroid Dorsomorphin, SB-431542, 
FGF2, EGF

Stationary floating - [56,57]

Cortical 
neuroepithelium

IWR1e, SB431542 Stationary floating Matrigel [58]

Cortical organoid Noggin, hDkk1, FGF2 Stationary floating Matrigel on dish [59]
Cortical organoid SB-431542, LDN-193189, 

XAV939
Orbital shaker - [60]

Forebrain organoid IWR1e, SB431542 Spinning bioreactor Matrigel [61]
Forebrain organoid Wnt3a, Dorsomorphin, A83-

01, CHIR99021, SB431542
Miniaturized Spinning 

Bioreactor
Matrigel [62]

Ventral forebrain Ventral organoid IWP-2, SAG Orbital shaker Matrigel [63]
Subpallium 

spheroids
Dorsomorphin, SB431542, 

IWP-2, SAG
Stationary floating - [64]

Medial ganglionic 
eminence

MGE organoid SB431542, LDN193189, 
XAV939, Shh, 
Purmorphamine

Orbital shaker - [60]

Lateral ganglionic 
eminence

Striatal organoid Dorsomorphin, SB431542, 
Activin A, IWP-2, SR11237, 
DAPT

Stationary floating - [65]

Hippocampus Hippocampal 
primordium-like 
tissue

SB431542, IWR1, CHIR99021, 
and BMP4

Stationary floating - [66]

Hippocampal 
Spheroids

SB-431542, LDN-193189, 
XAV939, Cyclopamine, 
CHIR99021

Stationary floating - [67]

Hippocampal 
organoid

Dorsomorphin, A83-01, SB-
431542, CHIR-99021, BMP7,

Orbital shaker Matrigel [68]

Choroid plexus Choroid plexus-like 
tissue

SB431542, IWR1, CHIR99021, 
and BMP4

Stationary floating - [66]

Choroid plexus 
organoid

LDN-193189, SB-431542, 
IWP-2, CHIR-99021, BMP7

Orbital shaker Matrigel [68]

Choroid plexus 
organoid

BMP4, CHIR-99021 Spinning bioreactor Matrigel [69]

bFGF, basic fibroblast growth factor; EGF, epidermal growth factor; IWP-2, inhibitor of Wnt production-2; SAG, smoothened agonist; BMP4/7, bone 
morphogenetic protein 4/7.
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The telencephalic dorsal-ventral axis identity is determined 
by temporal and spatial regulation of Shh signaling, which is a 
well-known ventralizing factor [77]. A few studies have success-
fully generated cortical organoids with ventral identity. Xiang 
et al. [60] used Shh and the Shh agonist purmophamine to 
generate ventralized telencephalic organoids resembling MGE. 
Specifically, this organoid showed a population of interneurons 
expressing somatostatin, which is produced specifically in the 
MGE [60,78]. Cederquist et al. [79] engineered an inducible 
Shh-expressing hPSC line to generate forebrain organoids. With 
proper modulation of Shh signaling, telencephalic organoids 
featuring dorsal and ventral regions were successfully generat-
ed. Miura et al. [65] reported organoids resembling the LGE 
by using activin A, IWP-2, and the retinoid X receptor (RXR) 
agonist SR11237. They also observed the projections between 
cortical and striatal neurons by generating morphologically and 
functionally mature LGE organoids. These organoids repre-
senting the ventral subpallium of the telencephalon can serve as 
an important tool to understand the properties of brain regions 
and to investigate networks between brain regions. However, or-
ganoids resembling the amygdala, entorhinal cortex, and CGE 
have not been reported yet. 

Telencephalic organoids for models of 
brain diseases 

Organoids were introduced decades ago, but they were replaced 
with cell culture systems [80,81]. However, the research and 
use of organoids have recently experienced a resurgence. They 
are now recognized as valuable tools in biomedical science, with 
applications ranging from basic research to therapeutic use. 
Organoids serve as excellent resources for studying organ devel-
opment, maintaining homeostasis, and promoting regeneration. 
They are also useful in disease modeling, therapeutic develop-
ment, and regenerative treatment through organoid transplan-
tation [82]. Among the various types of organoids, brain organ-
oids are unique in that they provide non-regenerating tissue. 
While the therapeutic potential of brain organoids is still being 
explored, they have already proven to be valuable resources for 
basic research on human brain development and diseases. Sev-
eral brain disorders related to the telencephalon have recently 
been modeled (Table 2) [45,59,62-64,67,83–100]. 

Brain organoids can serve as a platform for the study of infec-
tious diseases and host-pathogen interactions. For instance, a 
viral infection of the brain can be reproduced simply by infect-
ing a brain organoid with the given virus. Virology techniques, 
immunofluorescence imaging, and single-cell RNA sequencing 

can be directly applied to the infected organoids to investigate 
the virus-host interaction. One of many examples includes 
modeling microcephaly by infecting the organoid with the Zika 
virus. Human brain organoids infected with the Zika virus ex-
hibited growth inhibition, and a protein known as Zika-NS2A 
was found to inhibit the proliferation of radial glial cells [83]. 
Recently, cerebral organoids infected with the SARS-CoV-2 
virus displayed hyperphosphorylation of tau and neuronal cell 
death. Interestingly, an abnormal tau distribution from the axon 
to the soma was observed [89]. These results provided intrigu-
ing insights into the developmental disorders and neurotoxicity 
caused by the virus. 

Fragile X syndrome is a leading cause of both autism and in-
tellectual disability. In forebrain organoids derived from fragile X 
syndrome iPSCs, there was an overexpression of CHD2, a gene 
associated with autism. Notably, treatment with a PI3K inhibi-
tor was able to reverse these phenotypes [100]. Furthermore, a 
successful model of Timothy syndrome, a neurodevelopmental 
disorder characterized by autism spectrum disorder and ep-
ilepsy, was created using an assembloid system. This system 
combines 2 types of forebrain organoids, one representing the 
dorsal pallium and the other representing the subpallium. This 
model enabled the observation of interneuron migration from 
the subpallium to the pallium, revealing defects in the migration 
of intermediate neurons and an increase in residual calcium. 
Importantly, treatment with an L-type calcium channel blocker 
significantly reversed the neural and molecular phenotypes [64]. 

Alzheimer disease (AD) is a devastating neurodegenerative 
disorder that affects memory, thinking, and behavior. Although 
the exact pathogenesis and cause of AD have yet to be conclu-
sively established, excessive accumulation of β-amyloid plaques 
or tau tangles are known culprits of AD [101]. Recently, AD 
models using human-induced pluripotent stem cells (hiPSCs) 
derived from patients with familial AD or Down syndrome have 
been developed [93]. Here, AD cerebral organoids showed 
an accumulation of β-amyloid peptides. Although the cortex 
is predominantly affected in AD, the hippocampus is the first 
region to show signs of the disease. To investigate the impact 
of AD pathogenesis on the hippocampus, hippocampus organ-
oids from hiPSCs from AD patients carrying variations in the 
amyloid precursor protein or presenilin 1 (PS1) genes were 
reported. AD hippocampal organoids revealed that overexpres-
sion of NeuroD1 altered the expression of diverse genes, conse-
quently affecting synaptic transmission [67]. Macrocephaly is 
a condition characterized by an abnormally large head size, and 
mutations in the tumor suppressor PTEN are a well-established 
genetic cause of this condition. In a macrocephaly model using 
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brain organoids with PTEN knocked out, researchers observed 
increased organoid proliferation and surface area, effectively 
mimicking the characteristics of macrocephaly [97]. 

In addition to disease modeling, brain organoids generated 
from patient-derived hiPSCs enable customized drug screening. 
The patient’s data from next-generation sequencing, such as the 
whole genome, transcriptome, epigenome, as well as proteome 
and metabolomes, provide information for a deep understand-
ing of the patient. Rett syndrome is an X chromosome-related 

neurodevelopmental disorder, and it is known that methyl CpG 
binding protein 2 (MeCP2) is the cause of genetic abnormali-
ties. Our recent studies found that JQ1, a BET protein inhibitor, 
rescued abnormal neural activity and soma size, as well as the 
entire transcriptome in brain organoids with MeCP2 mutations 
[96]. There have also been reports of antitumor drug discovery 
using organoid-derived glioblastoma [102,103]. Numerous 
studies are currently underway to test the efficacy of drugs for 
specific diseases using organoid models. 

Table 2. Modeling neurological disorders with telencephalon-related brain organoids
Disease modeling

Type of organoid Disease phenotype of organoid Reference
Disease type Substance/gene

Microcephaly Zika virus Forebrain organoid Decrease of neuronal cell-layer volume, resembling 
microcephaly

[62]

Forebrain organoid Disruption of cortical neurogenesis [83]
Cerebral organoid Perturbed cell fate, a reduction in organoid volume [84]
Cerebral organoid Reduction of proliferative zones, disrupted cortical 

layers
[85]

Cerebral organoid Neural progenitor apoptosis, growth restriction [86]
Cerebral organoid Reduced size and viability, programmed cell death 

responses.
[87]

SARS-CoV-2 virus Cortical organoid - [88]
Cerebral organoid Neuronal cell death, aberrant Tau localization, [89]
Choroid plexus organoid disruption of blood-CSF barrier [90]

HCMV virus Cerebral Organoid Reduction in organoid volume, degeneration of 
β-tubulin III integrity

[91]

Alzheimer's disease APP/PSN1 Hippocampal spheroid Loss of synaptic proteins, increased ratio of 
intracellular and extracellular Aβ42/Aβ40 peptides

[67]

APP Neocortex Aβ aggregation, hyperphosphorylated tau protein, 
endosome abnormalities

[92]

PSN1 Cerebral organoid Higher production of the Aβ protein, increased tau 
phosphorylation

[93]

APOE4 Cerebral organoid Increased levels of Aβ and phosphorylated tau [94]
Rett syndrome MeCP2 Forebrain Organoid Lower expression of neural progenitor, defect of 

electrophysiological activity
[95]

Cortical organoid, MGE organoid Dysregulated gene in neurons and glial cells, 
abnormal transcription related to synaptic 
transmission

[96]

Autism Spectrum Disorders, FOXG1 Telencephalic organoid Accelerated cell cycle, overproduction of GABAergic 
inhibitory neurons

[59]

CDK5RAP2 Cerebral organoid Premature neuronal differentiation [45]
PTEN Cerebral organoid Delayed neuronal differentiation, expanded VZ and 

oSVZ, surface expansion and folding
[97]

CHD8 Cerebral organoid Dysregulated Wnt/β-catenin signaling, GABAergic 
interneuron related gene

[98]

Miller-Dieker syndrome PAFAH1B1 Cerebral organoid Increase apoptosis/vertical spindle orientation, 
prolonged mitosis

[99]

Timothy syndrome CACNA1C Cortical and subpallium spheroid Abnormal migratory saltation [64]
Fragile X syndrome FMR1 Forebrain organoid Dysregulated neurogenesis, neuronal maturation 

and neuronal excitability.
[100]

SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; HCMV, human cytomegalovirus; APP, amyloid precursor protein; PSN1, prese-
nilin 1; APOE4, apolipoprotein E4; MeCP2, methyl-CpG binding protein 2; FOXG1, forkhead box G1; PTEN, phosphatase and tensin homolog; 
CDK5RAP2, CDK5 regulatory subunit associated protein 2; CHD8, chromodomain-helicase-DNA-binding protein 8; PAFAH1B1, platelet acti-
vating factor acetylhydrolase 1b regulatory subunit 1; CACNA1C, L-type calcium channel Cav1. 2; FMR1, fragile X messenger ribonucleopro-
tein 1.
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Current limitations, challenges, and 
future perspectives 

Brain organoids’ similarity to the actual brain has enabled dis-
ease modeling and the investigation of pathogenesis in brain 
disorders caused by genetics, infection, and cancer. These or-
ganoids have offered groundbreaking opportunities to study the 
developmental processes of the brain. However, there are still 
several limitations that need to be addressed. 

One of the main challenges is controlling the quality and ho-
mogeneity of organoids. Even when the same stem cell line is 
utilized, each organoid may not exhibit identical structure and 
developmental timing [43]. This issue directly impacts the reli-
ability of organoid model systems in pharmaceutical drug devel-
opment and diagnostics. To overcome this limitation, attempts 
have been made to improve organoid reproducibility and 
homogeneity by applying bioengineering tools. For example, 
synthetic microfluidic systems produce more homogeneous and 
reproducible organoids through the precise control of experimen-
tal parameters [104]. In addition, single-use vertical wheel biore-
actors generated reproducible, scalable, and homogeneous mature 
organoids [105]. Micropillar array technology is another method 
for controlling organoid size and increasing reproducibility [106]. 
These engineering techniques may become the gold standard for 
consistently producing homogeneous brain organoids. 

Another major challenge in brain organoids is achieving 
neural maturity. Although many studies characterize brain or-
ganoids by documenting neural activity, only a select few neu-
rons exhibit significant activity. The root cause of this neuronal 
immaturity is often attributed to an insufficient development 
period for in vitro brain organoids. In fact, recent studies that 
conducted longitudinal neural activity measurements for long-
term culture organoids have demonstrated that early organoids 
display less neural activity, which gradually matures with further 
development. Moreover, brain activity in organoids over a year 
old exhibited irregular electroencephalogram patterns, similar 
to the chaotic bursts of synchronized electrical activity observed 
in the developing brains of premature infants. This rhythm was 
comparable to that of infants born 25 to 39 weeks post-fertiliza-
tion [107]. In summary, while it is now possible to replicate the 
immature brain in brain organoids, further research is required 
to accurately reproduce the mature adult brain. 

Tissue comprises complex microenvironments that coexist 
with a variety of cell types. However, brain organoids do not 
possess such intricate structures and often lack these microen-
vironments. Various non-neuronal cells also play a crucial role 
in the development and function of the nervous system. For in-

stance, endothelial cells, pericytes, and microglia are non-neuro-
nal cells that are integral to vascular systems [108,109]. The lack 
of these systems can lead to cell apoptosis in brain organoids 
due to the failure to supply nutrients or oxygen to the organoid's 
inner core 54. Furthermore, brain organoids lack essential resi-
dent immune cells known as microglia. Recently, methods have 
been developed to address these limitations [110,111]. Cakir et 
al. [112] generated cortical organoids with vascular-like struc-
tures using embryonic stem cells that ectopically expressed the 
human E26 transformation specific (ETS) variant transcription 
factor 2 (ETV2). These cortical organoids with vascular-like 
structures demonstrated blood-brain barrier properties, includ-
ing an increase in the expression of tight junctions and nutrient 
transport. In another approach, Shi et al. [113] developed a 
protocol to generate vascularized cortical organoids by co-cul-
turing human embryonic stem cells with human umbilical 
vein endothelial cells (HUVECs). These HUVECs formed a 
well-developed vascular system in the brain organoids, enabling 
long-term culture for over 200 days. In addition, Ormel et al. 
[114] succeeded in generating cerebral organoids containing 
microglia. Microglia are known to play a significant role in the 
brain's immune system and neuronal maturation. Organoids 
containing microglia could greatly aid disease research and 
provide opportunities to explore the in-depth role of microglia 
in brain development. However, systems with various non-neu-
ronal cells are still not fully integrated into brain organoids, and 
the verification of their precise functions remains incomplete. 
The absence of such systems may also pose limitations in the 
disease modeling of brain organoids. 

Reconstructing the interaction between different brain re-
gions remains a significant challenge in the field of brain organ-
oids. Most brain organoids developed to date represent only 
specific regions. To address these challenges, the assembloid 
system has been introduced. This system combines multiple 
region-specific organoid types to recreate the interaction be-
tween the given regions. Examples of this include the assembly 
of dorsal cortical organoids with ventral cortical organoids, 
and thalamic organoids with cortical organoids [60,74]. The 
assembloid method can be used to directly establish a disease 
model and illustrate the abnormal regulation of neural circuits 
in neuropsychiatric disorders, such as Timothy syndrome [65]. 
This approach facilitates the study of biological mechanisms 
that require interactions between various brain organoid regions 
in vitro, and also serves as a platform for disease modeling.  

Organoids are among the most accessible and physiological-
ly suitable models to study the differentiation process of stem 
cells in controlled environments. Brain organoids have been 
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proven to be a high-fidelity platform to reveal the unique iden-
tity of stem cells and the niche composition of the surrounding 
microenvironment [115]. Combined with analyses of genetic 
information, the transcriptome, and proteins, organoids have 
significantly contributed to our understanding of brain devel-
opment, homeostasis maintenance, and key aspects of disease. 
The process of creating a brain organoid that mirrors human 
brain development has been utilized in various ways, ranging 
from basic research tools to applied research. Brain organoids 
facilitate disease modeling and pathogenesis studies for condi-
tions such as infectious diseases, genetic diseases, and cancer, 
thereby aiding in the identification of reliable molecular targets 
[81,116]. When combined with an engineering approach, brain 

organoids can serve as testing grounds for evaluating drug effi-
cacy and toxicity. The integration of organoid technology with 
current technologies leads to a variety of subsequent functions 
and applications, underscoring the versatility of organoids (Fig. 
3). These features, coupled with their physiological relevance, 
position organoids as one of the most exciting and promising 
technologies recently introduced for studying human brain de-
velopment, disease, and treatment. 
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