4. Kaur S, Kaur I, Rawal P, Tripathi DM, Vasudevan A. Non-matrigel scaffolds for organoid cultures. Cancer Lett 2021;504:58-66.
14. Li Y, Maciel D, Rodrigues J, Shi X, Tomás H. Biodegradable polymer nanogels for drug/nucleic acid delivery. Chem Rev 2015;115:8564-608.
15. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2002;54:3-12.
17. Xiong R, Grant AM, Ma R, Zhang S, Tsukruk VV. Naturally-derived biopolymer nanocomposites: interfacial design, properties and emerging applications. Mater Sci Eng R 2018;125:1-41.
18. McClements DJ. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: physicochemical aspects. Adv Colloid Interface Sci 2017;240:31-59.
19. Lin S, Cao C, Wang Q, Gonzalez M, Dolbow JE, Zhao X. Design of stiff, tough and stretchy hydrogel composites via nanoscale hybrid crosslinking and macroscale fiber reinforcement. Soft Matter 2014;10:7519-27.
20. Li J, Illeperuma WR, Suo Z, Vlassak JJ. Hybrid hydrogels with extremely high stiffness and toughness. ACS Macro Lett 2014;3:520-3.
22. Reddy N, Reddy R, Jiang Q. Crosslinking biopolymers for biomedical applications. Trends Biotechnol 2015;33:362-9.
23. Zhang X, Malhotra S, Molina M, Haag R. Micro- and nanogels with labile crosslinks: from synthesis to biomedical applications. Chem Soc Rev 2015;44:1948-73.
24. Cao J, Cai Y, Yu L, Zhou J. Dual physically crosslinked hydrogels based on the synergistic effects of electrostatic and dipole-dipole interactions. J Mater Chem B 2019;7:676-83.
25. Fredrick R, Podder A, Viswanathan A, Bhuniya S. Synthesis and characterization of polysaccharide hydrogel based on hydrophobic interactions. J Appl Polym Sci 2019;136:47665.
26. Peng G, Wang J, Yang F, Zhang S, Hou J, Xing W, et al. In situ formation of biodegradable dextran-based hydrogel via Michael addition. J Appl Polym Sci 2013;127:577-84.
27. Dragan ES, Dinu MV. Polysaccharides constructed hydrogels as vehicles for proteins and peptides. A review. Carbohydr Polym 2019;225:115210.
28. Teixeira LS, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M. Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials 2012;33:1281-90.
29. Li X, Su X. Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B 2018;6:4714-30.
31. Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci 2019;7:843-55.
33. Sperinde JJ, Griffith LG. Synthesis and characterization of enzymatically-cross-linked poly(ethylene glycol) hydrogels. Macromolecules 1997;30:5255-64.
36. Lutolf MP, Hubbell JA. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 2003;4:713-22.
41. Lee KY, Jeong L, Kang YO, Lee SJ, Park WH. Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 2009;61:1020-32.
43. Jones OG, McClements DJ. Functional biopolymer particles: design, fabrication, and applications. Compr Rev Food Sci Food Saf 2010;9:374-97.
44. Oh JK, Lee DI, Park JM. Biopolymer-based microgels/nanogels for drug delivery applications. Prog Polym Sci 2009;34:1261-82.
45. Okeyoshi K, Joshi G, Okajima MK, Kaneko T. Formation of polysaccharide membranes by splitting of evaporative air-LC interface. Adv Mater Interfaces 2018;5:1701219.
46. Jankolovits J, Gazit OM, Nigra MM, Bohling J, Roper JA, Katz A. Single-pot encapsulation of oxide particles within a polysaccharide multilayer nanocoating. Adv Mater Interfaces 2015;2:1400465.
47. Capeling MM, Czerwinski M, Huang S, Tsai YH, Wu A, Nagy MS, et al. Nonadhesive alginate hydrogels support growth of pluripotent stem cell-derived intestinal organoids. Stem Cell Rep 2019;12:381-94.
51. Geuens T, Ruiter FA, Schumacher A, Morgan FL, Rademakers T, Wiersma LE, et al. Thiol-ene cross-linked alginate hydrogel encapsulation modulates the extracellular matrix of kidney organoids by reducing abnormal type 1a1 collagen deposition. Biomaterials 2021;275:120976.
52. Ruiter FA, Morgan FL, Roumans N, Schumacher A, Slaats GG, Moroni L, et al. Soft, dynamic hydrogel confinement improves kidney organoid lumen morphology and reduces epithelial-mesenchymal transition in culture. Adv Sci (Weinh) 2022;9:e2200543.
53. Vallmajo-Martin Q, Broguiere N, Millan C, Zenobi-Wong M, Ehrbar M. PEG/HA hybrid hydrogels for biologically and mechanically tailorable bone marrow organoids. Adv Funct Mater 2020;30:1910282.
55. Weber HM, Tsurkan MV, Magno V, Freudenberg U, Werner C. Heparin-based hydrogels induce human renal tubulogenesis in vitro. Acta Biomater 2017;57:59-69.
56. Nowak M, Freudenberg U, Tsurkan MV, Werner C, Levental KR. Modular GAG-matrices to promote mammary epithelial morphogenesis in vitro. Biomaterials 2017;112:20-30.
57. Krüger M, Oosterhoff LA, van Wolferen ME, Schiele SA, Walther A, Geijsen N, et al. Cellulose nanofibril hydrogel promotes hepatic differentiation of human liver organoids. Adv Healthc Mater 2020;9:e1901658.
59. Curvello R, Garnier G. Cationic cross-linked nanocellulose-based matrices for the growth and recovery of intestinal organoids. Biomacromolecules 2021;22:701-9.
61. Agarwal T, Kabiraj P, Narayana GH, Kulanthaivel S, Kasiviswanathan U, Pal K, et al. Alginate bead based hexagonal close packed 3D implant for bone tissue engineering. ACS Appl Mater Interfaces 2016;8:32132-45.
64. Webber RE, Shull KR. Strain dependence of the viscoelastic properties of alginate hydrogels. Macromolecules 2004;37:6153-60.
65. Kulanthaivel S, Rathnam V S S, Agarwal T, Pradhan S, Pal K, Giri S, et al. Gum tragacanth-alginate beads as proangiogenic-osteogenic cell encapsulation systems for bone tissue engineering. J Mater Chem B 2017;5:4177-89.
66. Papas KK, De Leon H, Suszynski TM, Johnson RC. Oxygenation strategies for encapsulated islet and beta cell transplants. Adv Drug Deliv Rev 2019;139:139-56.
67. Capeling M, Huang S, Mulero-Russe A, Cieza R, Tsai YH, Garcia A, et al. Generation of small intestinal organoids for experimental intestinal physiology. Methods Cell Biol 2020;159:143-74.
68. Oh EJ, Park K, Kim KS, Kim J, Yang JA, Kong JH, et al. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release 2010;141:2-12.
72. Liang Y, Kiick KL. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater 2014;10:1588-600.
73. Capila I, Linhardt RJ. Heparin-protein interactions. Angew Chem Int Ed Engl 2002;41:391-412.
75. Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ. Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 2014;19:383-96.
76. Curvello R, Raghuwanshi VS, Garnier G. Engineering nanocellulose hydrogels for biomedical applications. Adv Colloid Interface Sci 2019;267:47-61.
77. Saito T, Kimura S, Nishiyama Y, Isogai A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 2007;8:2485-91.
78. Mendoza DJ, Browne C, Raghuwanshi VS, Simon GP, Garnier G. One-shot TEMPO-periodate oxidation of native cellulose. Carbohydr Polym 2019;226:115292.
79. Ninan N, Muthiah M, Park IK, Wong TW, Thomas S, Grohens Y. Natural polymer/inorganic material based hybrid scaffolds for skin wound healing. Polym Rev 2015;55:453-90.
80. Gupta P, Nayak KK. Characteristics of protein-based biopolymer and its application. Polym Eng Sci 2015;55:485-98.
82. Xu X, Xu Z, Yang X, He Y, Lin R. Construction and characterization of a pure protein hydrogel for drug delivery application. Int J Biol Macromol 2017;95:294-8.
88. Curvello R, Alves D, Abud HE, Garnier G. A thermo-responsive collagen-nanocellulose hydrogel for the growth of intestinal organoids. Mater Sci Eng C Mater Biol Appl 2021;124:112051.
91. Wang Y, Liu H, Zhang M, Wang H, Chen W, Qin J. One-step synthesis of composite hydrogel capsules to support liver organoid generation from hiPSCs. Biomater Sci 2020;8:5476-88.
96. Treacy NJ, Clerkin S, Davis JL, Kennedy C, Miller AF, Saiani A, et al. Growth and differentiation of human induced pluripotent stem cell (hiPSC)-derived kidney organoids using fully synthetic peptide hydrogels. Bioact Mater 2023;21:142-56.
99. Echave MC, Saenz del Burgo L, Pedraz JL, Orive G. Gelatin as biomaterial for tissue engineering. Curr Pharm Des 2017;23:3567-84.
100. Zhang Y, Olsen K, Grossi A, Otte J. Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides. Food Chem 2013;141:2343-54.
101. Agarwal T, Celikkin N, Costantini M, Maiti TK, Makvandi P. Recent advances in chemically defined and tunable hydrogel platforms for organoid culture. Bio-Des Manuf 2021;4:641-74.
102. Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm 2001;221:1-22.
103. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev 2001;101:1869-79.
104. Yuan L, Li B, Yang J, Ni Y, Teng Y, Guo L, et al. Effects of composition and mechanical property of injectable collagen I/II composite hydrogels on chondrocyte behaviors. Tissue Eng Part A 2016;22:899-906.
105. Truong VX, Hun ML, Li F, Chidgey AP, Forsythe JS. In situ-forming click-crosslinked gelatin based hydrogels for 3D culture of thymic epithelial cells. Biomater Sci 2016;4:1123-31.
106. Parker NG, Povey MJ. Ultrasonic study of the gelation of gelatin: phase diagram, hysteresis and kinetics. Food Hydrocolloids 2012;26:99-107.
110. Li H, Kong N, Laver B, Liu J. Hydrogels constructed from engineered proteins. Small 2016;12:973-87.
111. Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA. Reversible hydrogels from self-assembling artificial proteins. Science 1998;281:389-92.
113. Li Y, Xue B, Cao Y. 100th anniversary of macromolecular science viewpoint: synthetic protein hydrogels. ACS Macro Lett 2020;9:512-24.
116. Choi HS, Jo YK, Ahn GN, Kim DP, Joo KI, Cha HJ. Magnetically guidable proteinaceous adhesive microbots for targeted locoregional therapeutics delivery in the highly dynamic environment of the esophagus. Adv Funct Mater 2021;31:2104602.
118. Li H, Kong N, Laver B, Liu J. Hydrogels constructed from engineered proteins. Small 2016;12:973-87.
119. Jo YK, Choi BH, Zhou C, Jun SH, Cha HJ. Cell recognitive bioadhesive-based osteogenic barrier coating with localized delivery of bone morphogenetic protein-2 for accelerated guided bone regeneration. Bioeng Transl Med 2023;8:e10493.
120. Choi BH, Jo YK, Zhou C, Jang HS, Ahn JS, Jun SH, et al. Sticky bone-specific artificial extracellular matrix for stem cell-mediated rapid craniofacial bone therapy. Appl Mater Today 2020;18:100531.
121. Urry DW. Characterization of soluble peptides of elastin by physical techniques. Methods Enzymol 1982;82 Pt A:673-716.
122. Tamura T, Yamaoka T, Kunugi S, Panitch A, Tirrell DA. Effects of temperature and pressure on the aggregation properties of an engineered elastin model polypeptide in aqueous solution. Biomacromolecules 2000;1:552-5.
123. Acosta S, Quintanilla-Sierra L, Mbundi L, Reboto V, Rodríguez-Cabello JC. Elastin-like recombinamers: deconstructing and recapitulating the functionality of extracellular matrix proteins using recombinant protein polymers. Adv Funct Mater 2020;30:1909050.
126. Slyke DV. Physiology of the amino acids. Nature 1942;149:342-5.
129. Vishakha SK, Kishor DB, Sudha SR. Natural polymers: a comprehensive review. Int J Res Pharm Biomed Sci 2012;3:1597-613.
132. Xu R, Zhou X, Wang S, Trinkle C. Tumor organoid models in precision medicine and investigating cancer-stromal interactions. Pharmacol Ther 2021;218:107668.
135. Wei M, Gao Y, Li X, Serpe MJ. Stimuli-responsive polymers and their applications. Polym Chem 2017;8:127-43.
137. Jin Y, Kim J, Lee JS, Min S, Kim S, Ahn DH, et al. Vascularized liver organoids generated using induced hepatic tissue and dynamic liver-specific microenvironment as a drug testing platform. Adv Funct Mater 2018;28:1801954.