2. Schutgens F, Clevers H. Human organoids: tools for understanding biology and treating diseases. Annu Rev Pathol 2020;15:211-34.
6. Fujii M, Matano M, Toshimitsu K, Takano A, Mikami Y, Nishikori S, et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell 2018;23:787-93.
8. Li M, Izpisua Belmonte JC. Organoids: preclinical models of human disease. N Engl J Med 2019;380:569-79.
15. Hradecka L, Wiesner D, Sumbal J, Koledova ZS, Maska M. Segmentation and tracking of mammary epithelial organoids in brightfield microscopy. IEEE Trans Med Imaging 2023;42:281-90.
18. Paddock SW. Principles and practices of laser scanning confocal microscopy. Mol Biotechnol 2000;16:127-49.
19. de Medeiros G, Ortiz R, Strnad P, Boni A, Moos F, Repina N, et al. Multiscale light-sheet organoid imaging framework. Nat Commun 2022;13:4864.
21. Vicente NB, Zamboni JE, Adur JF, Paravani EV, Casco VH. Photobleaching correction in fluorescence microscopy images. J Phys Conf Ser 2007;90:012068.
25. Sharma U, Chang EW, Yun SH. Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth. Opt Express 2008;16:19712-23.
28. Zysk AM, Nguyen FT, Oldenburg AL, Marks DL, Boppart SA. Optical coherence tomography: a review of clinical development from bench to bedside. J Biomed Opt 2007;12:051403.
29. Schmitt JM. Optical coherence tomography (OCT): a review. IEEE J Sel Top Quantum Electron 1999;5:1205-15.
30. Fercher AF. Optical coherence tomography: development, principles, applications. Z Med Phys 2010;20:251-76.
31. Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 2003;11:889-94.
33. Izatt JA, Choma MA. Theory of optical coherence tomography. In: Drexler W, Fujimoto JG, editors. Biological and medical physics, biomedical engineering: optical coherence tomography. Berlin, Heidelberg: Springer; 2008. p. 47-72.
34. Yasin Alibhai A, Or C, Witkin AJ. Swept source optical coherence tomography: a review. Curr Ophthalmol Rep 2018;6:7-16.
35. Dubois A, Grieve K, Moneron G, Lecaque R, Vabre L, Boccara C. Ultrahigh-resolution full-field optical coherence tomography. Appl Opt 2004;43:2874-83.
36. Wang L, Fu R, Xu C, Xu M. Methods and applications of full-field optical coherence tomography: a review. J Biomed Opt 2022;27:050901.
37. Vabre L, Dubois A, Boccara AC. Thermal-light full-field optical coherence tomography. Opt Lett 2002;27:530-2.
38. Dubois A. Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets. J Opt Soc Am A Opt Image Sci Vis 2001;18:1972-9.
42. Aumann S, Donner S, Fischer J, Müller F. Optical coherence tomography (OCT): principle and technical realization. In: Bille J, editors. High resolution imaging in microscopy and ophthalmology. Cham: Springer; 2019. p. 59-85.
43. Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher AF, et al. Submicrometer axial resolution optical coherence tomography. Opt Lett 2002;27:1800-2.
44. Hitzenberger CK, Danner M, Drexler W, Fercher AF. Measurement of the spatial coherence of superluminescent diodes. J Mod Opt 1999;46:1763-74.
45. Browne AW, Arnesano C, Harutyunyan N, Khuu T, Martinez JC, Pollack HA, et al. Structural and functional characterization of human stem-cell-derived retinal organoids by live imaging. Invest Ophthalmol Vis Sci 2017;58:3311-8.
50. Lin B, McLelland BT, Aramant RB, Thomas BB, Nistor G, Keirstead HS, et al. Retina organoid transplants develop photoreceptors and improve visual function in RCS rats with RPE dysfunction. Invest Ophthalmol Vis Sci 2020;61:34.
53. Deloria AJ, Haider S, Dietrich B, Kunihs V, Oberhofer S, Knofler M, et al. Ultra-high-resolution 3D optical coherence tomography reveals inner structures of human placenta-derived trophoblast organoids. IEEE Trans Biomed Eng 2021;68:2368-76.
60. Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 2014;345:1247125.